Martedì 19 novembre 2019, alle ore 15:00 precise, presso la sala conferenze IMATI-CNR di Pavia,

 
Espen Sande, Roma Tor Vergata


terrà un seminario dal titolo:

Explicit error estimates for h-p-k-refinement in isogeometric analysis
 
nell'ambito del Seminario di Matematica Applicata (IMATI-CNR e Dipartimento di Matematica, Pavia), http://matematica.unipv.it/it/seminari-matematica-applicata
 

_____________________

 
Abstract.  In this talk we provide a priori error estimates with explicit constants for both the $L^2$-projection and the Ritz projection onto spline spaces of arbitrary smoothness defined on arbitrary grids. This extends and completeness the results recently obtained for spline spaces of maximal smoothness.

The presented error estimates indicate that smoother spline spaces exhibit a better approximation behavior per degree of freedom, even for low smoothness of the functions to be approximated. This is in complete
agreement with the numerical evidence found in the literature.

We begin with presenting results for univariate spline spaces, and then we address multivariate tensor-product spline spaces and isogeometric spline spaces generated by means of a mapped geometry, both in the single-patch and in the multi-patch case.